

Marco Del Tutto and <u>Vishvas Pandey</u>, for the SBND collaboration

with Pedro Machado, Kevin Kelly, and Roni Harnik

The SBN Program at Fermilab

- ◆ Three functionally identical Liquid Argon Time Projection Chamber (LArTPC) detectors located along the Booster Neutrino Beamline (BNB) at Fermilab
- ◆ Goals of the SBN program:
 - Search for eV-scale sterile neutrinos
 - Study of neutrino-argon interactions at the GeV energy scale
 - Search for new/rare physics processes in the neutrino sector and beyond
 - Advancement of the LArTPC detector technology

SBND TPC

- 2 TPCs with 2 m drift length
- 1.28 ms drift time at 500V/cm
- 3 wire planes (11264 wires):
 0, ∓60 deg,
 3mm wire pitch
- Cold analog and digital electronics

- Photon Detection System (PDS)
 120 8" PMTs (96 coated with TPB)
 192 X-ARAPUCA modules
 TPB coated reflector foils on the cathode
- Full CRT (cosmic ray tagger) coverage

SBND Assembly and Installation

Anode Plane (APA)

Cathode Plane (CPA)

Cryogenic Installation

Warm Cryostat

SBND Assembly and Installation

SBND Physics

♦ Neutrino-Nucleus Scattering Physics

- SBND will collect world's largest sample of neutrino interactions on argon.
 - ~7 million ν_{μ} interactions
 - ~50,000 ν_e interactions

Corresponds to 6.6x10²⁰ protons-on-target (delivered in approximately 3 years)

SBND Physics

♦ Beyond the Standard Model Physics

- LArTPC capabilities combined with the proximity to the neutrino source makes SBND potentially sensitive to a vast range of BSM physics searches.
 - New states produced in the beam target (dark matter, heavy neutrinos, millicharged particles, ...)
 - Modifications to neutrino oscillations (large extra dimensions, decaying sterile neutrinos, ...)

A range of new physics opportunities at SBN are discussed in:

P. A. Machado, O. Palamara, D. W. Schmitz, arXiv:1903.04608

Courtesy of P. Machado

NuPRISM and DUNE-PRISM

♦ Neutrino beam "off-axis" effect: as one moves away from the neutrino beam axis, the observed neutrino energy spectrum narrows and peaks at a lower energy. By measuring neutrino interactions across a range of off-axis angles one would control the neutrino interaction uncertainty in the oscillation analysis.

NuPRISM and DUNE-PRISM

◆ Neutrino beam "off-axis" effect: as one moves away from the neutrino beam axis, the observed neutrino energy spectrum narrows and peaks at a lower energy. By measuring neutrino interactions across a range of off-axis angles one would control the neutrino interaction uncertainty in the oscillation analysis.

♦ NuPRISM

 Water Cherenkov detector moves through a cylindrical chamber [nuPRISM Collaboration], arXiv:1412.3086 [physics.ins-det]

8/25

NuPRISM and DUNE-PRISM

◆ Neutrino beam "off-axis" effect: as one moves away from the neutrino beam axis, the observed neutrino energy spectrum narrows and peaks at a lower energy. By measuring neutrino interactions across a range of off-axis angles one could control the neutrino interaction uncertainty in the oscillation analysis.

→ DUNE-PRISM

- Movable LAr and GAr modules
- 574 m downstream of the neutrino target
- Scans upto 3.2 degrees from the neutrino beam axis

[DUNE Collaboration], arXiv:2103.13910 [physics.ins-det]

♦ SBND-PRISM

- 112 ton LAr detector, 4m x 4m x 5m dimension
- 110m from the neutrino target
- 2 LArTPCs: TPC 0, TPC1
- Detector is ~74 cm off the beam axis

10/25

♦ SBND-PRISM

- 112 ton LAr detector, 4m x 4m x 5m dimension
- 110m from the neutrino target
- 2 LArTPCs: TPC 0, TPC1
- Detector is ~74 cm off the beam axis

DUNE: 1° ≈ 10 m

♦ SBND-PRISM

- 112 ton LAr detector, 4m x 4m x 5m dimension
- 110m from the neutrino target
- 2 LArTPCs: TPC 0, TPC1

- Detector is ~74 cm off the beam axis
- Scans upto ~ 1.3 degree off-axis angles (OAAs)
 (Off-axis angle is calculated w.r.t. target position)
- The detector can be divided in several off-axis slices:

$$OAA \in [0.0^{\circ}, 0.2^{\circ})$$

$$OAA \in [0.2^{\circ}, 0.4^{\circ})$$

$$OAA \in [0.4^{\circ}, 0.6^{\circ})$$

$$OAA \in [0.6^{\circ}, 0.8^{\circ})$$

$$OAA \in [0.8^{\circ}, 1.0^{\circ})$$

$$OAA \in [1.0^{\circ}, 1.2^{\circ})$$

$$OAA \in [1.2^{\circ}, 1.4^{\circ})$$

$$OAA \in [1.4^{\circ}, 1.6^{\circ})$$

SBND-PRISM: ν_{μ} Flux

• ν_{μ} Energy Distribution

- ν_{μ} come predominately from the two-body decay, less angular spread, flux changes rapidly with respect to the beam axis.
- With the OAA, the observed neutrino energy spectrum narrows and peaks at a lower energy.

$$\pi^+ \to \nu_\mu + \mu^+$$

$$K^+ \to \nu_\mu + \mu^+$$

ν_{μ} flux in each of the OAA regions

SBND-PRISM: ν_{μ} Flux

• ν_{μ} Energy Distribution

- ν_{μ} come predominately from the two-body decay, less angular spread, flux changes rapidly with respect to the beam axis.
- With the OAA, the observed neutrino energy spectrum narrows and peaks at a lower energy.

$$\pi^+ \to \nu_{\mu} + \mu^+$$

$$K^+ \to \nu_{\mu} + \mu^+$$

SBND-PRISM: ν_{μ} to ν_{e} Differences

• ν_{μ} to ν_{e} Events Distributions

• Unlike ν_{μ} , ν_{e} come predominately from the three-body decay. For the same parent energy, the ν_{e} flux has a larger angular spread than that of ν_{μ} , and does not follow the same "off-axis" effect as ν_{μ} .

$$\pi^+ \to \nu_\mu \ + \mu^+$$

$$K^+ \to \nu_\mu \ + \mu^+$$

u_{μ} CC Events

higher off-axis angle → lower mean energy

$$\mu^+ \rightarrow \nu_e + \bar{\nu}_\mu + e^+$$

$$K^+ \rightarrow \nu_e + e^+ + \pi^0$$

$$K_L^0 \rightarrow \nu_e + e^+ + \pi^-$$

 ν_e CC Events

higher off-axis angle → ~same mean energy

Note high event statistics in all off-axis regions

SBND-PRISM: ν_{μ} to ν_{e} Differences

• ν_{μ} to ν_{e} Events Distributions

• Unlike ν_{μ} , ν_{e} come predominately from the three-body decay. For the same parent energy, the ν_{e} flux has a larger angular spread than that of ν_{μ} , and does not follow the same "off-axis" effect as ν_{μ} .

$$\pi^+ \to \nu_{\mu} + \mu^+$$

$$K^+ \to \nu_{\mu} + \mu^+$$

 ν_{μ} CC Events peak coincides with the on-axis position

$$\mu^+ \rightarrow \nu_e + \bar{\nu}_\mu + e^+$$

$$K^+ \rightarrow \nu_e + e^+ + \pi^0$$

$$K_L^0 \rightarrow \nu_e + e^+ + \pi^-$$

 ν_e CC Events distribution is almost constant

Note high event statistics in all off-axis regions

SBND-PRISM: CRT Data

CRT Data

- Part of the SBND cosmic ray tagger system was temporary installed in the detector hall.
- Below is a real data plot of muons from neutrinos interacting in the material upstream of the SBND detector hall (cosmic background subtracted).
- Data taken with the CRT shows the number of beaminduced muons decreases moving away from the beam center.

800

SBND-PRISM: Physics Potential

- ◆ Exploring Physics Potential of the SBND-PRISM (Some ongoing studies, feedback/ideas welcome)
 - Neutrino-Nucleus Interactions
 - Neutrino Oscillations
 - Dark Matter Searches

• . . .

SBND-PRISM: Neutrino-Nucleus Interactions

♦ Neutrino-Nucleus Interactions Physics

• Energy dependence:

- By measuring neutrino interactions at different OAA, we can directly infer the energy dependence of the cross section (and various nuclear effects) spanning over nearly 200 MeV energy difference.
- Study the relationship between neutrino energy, and lepton (and hadron) kinematics, done by measuring differential cross-section in lepton (and hadron) kinematics at different OAA.

 Need realistic neutrino interaction model to study subtle effects across the ~200 MeV difference (before we have data).

SBND-PRISM: Neutrino-Nucleus Interactions

♦ Neutrino-Nucleus Interactions Physics

• Energy dependence:

- By measuring neutrino interactions at different OAA, we can directly infer the energy dependence of the cross section (and various nuclear effects) spanning over nearly 200 MeV energy difference.
- Study the relationship between neutrino energy, and lepton (and hadron) kinematics, done by measuring differential cross-section in lepton (and hadron) kinematics at different OAA.

Disentangling nuclear physics at the "higher-energy" tail:

The "higher energy" tail of the ν_{μ} flux shrinks as a function of the OAA. This would potentially allow us to disentangle nuclear effects that start to dominate at ~1 GeV energy, e.g. non-QE contributions (2p-2h contribution, etc.).

 Need realistic neutrino interaction model to study subtle effects across the ~200 MeV difference (before we have data).

SBND-PRISM: Neutrino-Nucleus Interactions

♦ Neutrino-Nucleus Interactions Physics

ullet u_{μ} to u_{e} cross sections:

- Going off-axis, the increase in ν_e to ν_μ flux ratio combined with a choice of kinematics where ν_e to ν_μ differences are expected to be prominent should allow us to measure the ν_e/ν_μ cross section.
- This would allow us to study lepton mass effects, and test Lepton Flavor Universality.
- Note that we expect high event statistics in all offaxis regions.

 Need realistic neutrino interaction model to study subtle effects across the ~200 MeV difference (before we have data).

SBND-PRISM: Sterile Neutrino Oscillations

♦ Sterile Neutrino Oscillations

The PRISM feature of SBND can potentially improve the SBN sensitivities to sterile neutrino oscillations. Two possibilities to use the PRISM feature:

- Instead of treating SBND as a single detector, we can treat it as multiple detectors at different off-axis positions and include those in the **SBN oscillation fit**. Since the energy spectra are different, the neutrino interaction model will be over constrained.
- Can linearly combine the measurements at the different off-axis positions to reproduce a given choice of incident neutrino flux. Can match the ICARUS (far detector) oscillated spectrum in SBND (near detector).

SBND-PRISM: Sterile Neutrino Oscillations

♦ Sterile Neutrino Oscillations

Can we use SBND-PRISM for SBND-only sterile neutrino searches?
SBND-PRISM potentially allows probing higher values of Δm² for sterile neutrino oscillation searches.

Testing sensitivity with:

- $\Delta m^2 = 10 \text{ eV}^2$, $\sin^2 2\theta_{\mu e} = 0.001$
- v_e appearance mode
- very conservative systematics:
 free norm. + 30% bin-by-bin sys. on bkg

$$\chi^{2} = \sum_{i,j}^{\text{pos., bins}} \frac{(N_{ij} + \alpha T_{ij})^{2}}{N_{ij} + \sigma_{\text{bin}}^{2} N_{ij}^{2}}$$
 w/ PRISM $\chi^{2} : 13$ w/o PRISM $\chi^{2} : 2$

- Mismatch between ν_μ flux and ν_e contamination on different off-axis positions may be an opportunity to probe this physics.
- Proper estimation of systematics is needed before final conclusions can be made, but results look promising with current (conservative) systematic guess.

SBND-PRISM: Dark Matter Searches

◆ Light (sub-GeV) Dark Matter

V. De Romeri, K. J. Kelly, P. A. N. Machado, arXiv:1903.10505 [hep-ph]

- Produced via the decay of neutral mesons (no focusing) produced at the beam target.
- The DM-signal to neutrino-background ratio increases as a function of OAA.
 - For the DM-electron scattering signal, ν e scattering is one of the primary background.

SBND-PRISM: Dark Matter Searches

◆ Light (sub-GeV) Dark Matter

- Produced via the decay of neutral mesons (no focusing) produced at the beam target.
- The DM-signal to neutrino-background ratio increases as a function of OAA.

- For the DM-electron scattering signal, ν - e scattering is one of the primary background.

- Not yet included:
 - electron recoil energy information to discriminate signal vs. background, that is expected to further improve the sensitivity.
 - effects of dividing the detector into off-axis angular bins.

Summary

- SBND, currently under construction, is the near detector of the SBN program at Fermilab.
- SBND has a rich neutrino-nucleus cross sections, and BSM physics program.
- The proximity of the SBND to the neutrino target source, combined with the abundance of statistics allows us to use a "free" SBND-PRISM feature.
- SBND can take data on all the off-axis regions simultaneously.
- SBND-PRISM could constrain the relationship between true and reconstructed energy and
 potentially help disentangling the effects due to mismodeling of the neutrino flux, neutrino
 interaction cross-sections, and detector response.
- SBND-PRISM opens up new possibilities: can potentially constrain neutrino-nucleus interaction modeling, improve oscillation fits, allows for an SBND-only oscillation analysis, and other BSM searches.

Additional-Material

LArTPC: Operating Principle

Charged particles in LAr produce free ionization electrons and scintillation light

Ionization charge <u>drifts</u>
in a uniform electric field
towards the readout
wire-planes

Digitized signals from the wires are collected [time of the wire pulses gives the drift coordinate of the track and amplitude gives the deposited charge]

m.i.p. at 500 V/cm: ~ 60,000 e/cm ~ 50,000 photons/cm

Electron drift time ~ ms

VUV photons propagate and are shifted into VIS photons

Scintillation light fast signals from LDSs give event timing